

The thermeco₂ high-temperature heat pump from ENGIE Refrigeration

	05	
	Product features	
3	14 - 17	
poling supply	CO₂ as a refrigerant	
int		TAB

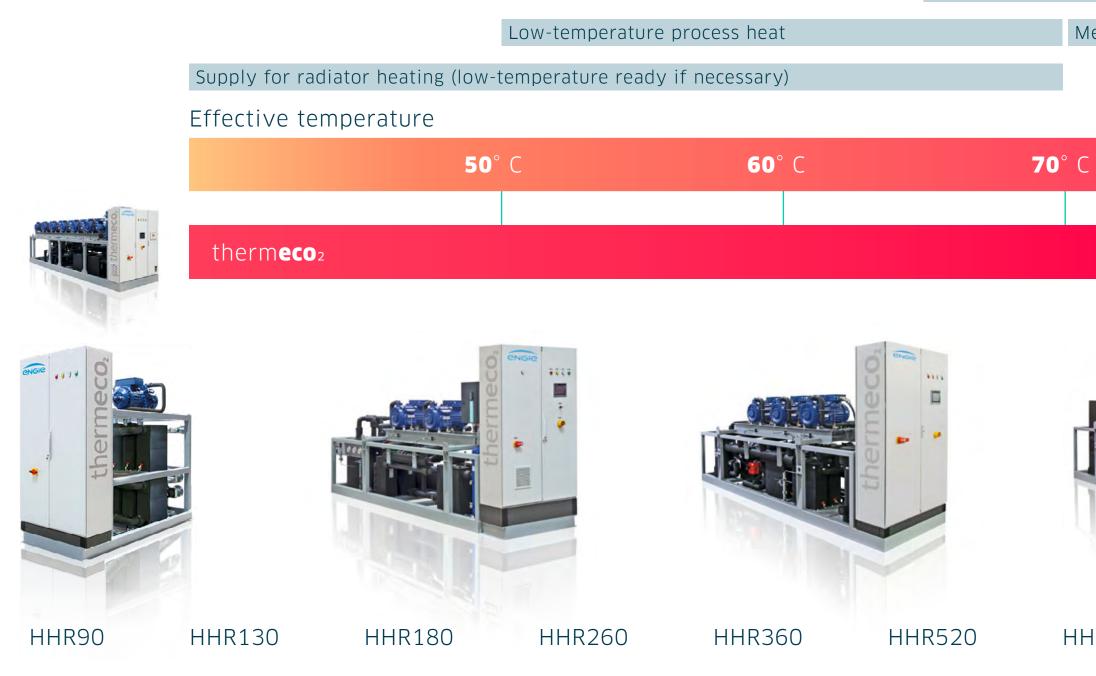
OUR thermeco₂ High-TEMPERATURE HEAT PUMP IS UNIQUE.

QUALITY

up to **900 COOLING MEDIUM** OUTLET TEMPERATURE

SEE for yourself!

HIGH-


END

TECHNOLOGY

ONE **SERIES**, **EIGHT** MODELS:

therm**eco**₂ offers the right performance for your application.

District heating networks for estates/districts

HHR720

Medium/high-temperature process heat

80° C

HHR1000

We offer you many power levels – between 90 and 1,000 kW for indoor installation and with low safety requirements. High condenser leaving water temperatures of up to +90 °C are possible. And one thing is certain with every version:

thermeco₂ improves your carbon balance!

100% regenerative heat generator

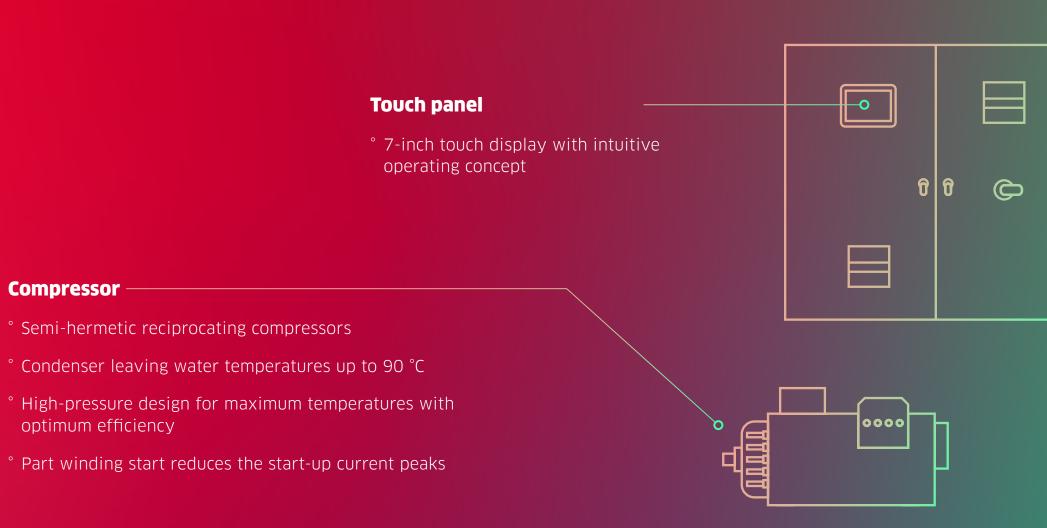
WHY HEAT PUMPS MEAN SMARTER HEATING:

Heat pumps are an especially intelligent and sustainable way of generating heat out of energy from renewable sources. And heat pumps are more than just an energysaving and environmentally friendly way of heating. Clever concepts make it possible to use just one system to provide heat in the winter and cooling in the summer. In the same way, it is possible to simultaneously generate heating and cooling for offices and industrial processes, for example. Heat pumps allow cooling and heat generation to be taken to new levels of efficiency for all kinds of applications. Our heat pumps with CO₂ technology, including therm**ecO₂**, are especially sustainable: the natural refrigerant is powerful, climate-friendly and non-critical to use.

Discover the functional principle of the thermeco₂ high-temperature heat pump!

PRODUCT FEATURES

thermeco₂ -**PERFECTLY** THOUGHT-OUT


Users who choose the therm**eco**₂ benefit from an efficient, energy-saving and environmentally friendly technology.

This is ensured by a sophisticated design principle that relies primarily on high-end components – for top quality **made in Germany**.

EXPLODED VIEW

Evaporator

- [°] High-pressure plate heat exchanger in soldered version
- ² High resistance against corrosion and extreme pressures for transcritical applications with CO₂
- Integrated refrigerant distribution system for optimum evaporator performance

Refrigerant

- [°] Natural refrigerant CO₂ [R-744]
- ² Low safety requirements due to safety group A1
- The refrigerant does not contribute to the destruction of the ozone layer (OPD=0) or the greenhouse effect (GWP = 1)

Oil regulation system-

- [°] Fully automatic, regular and needsbased lubricant supply for all compressors
- Highly efficient, fully welded and maintenance-free oil separator with integrated oil pan
- [°] Filter dryer for high level of operational safety and long service life

Switch cabinet

- Quality made in Germany
- ² Variable regulation concept, top computing speed and IT security thanks to integrated Siemens S7 PLC
- Connectivity with standard BCS protocols
- Compact design with diverse options
- Energy management options
- Optional connection to CoolCare remote maintenance software

Insulation

insulation of the entire refrigerant circuit prevents condensation and corrosion

Internal heat exchanger (IHE) with control valve

- ° IHE improves efficiency (COP)
- [°] Enables higher cooling medium outlet/supply temperatures
- ° 3-way control valve prevents pressure peaks and thus expensive system downtimes and the risk of inadequate heating supply

Gas cooler

- ² Counterflow plate heat exchanger in soldered version with slim exterior carbon steel frame for extremely high operating pressure
- ° Low storage volume and lower refrigerant filling enable a fast reaction to temperature fluctuations

Frame

æ

- [°] Welded steel frame combines stability and a compact design into a robust industrial solution
- ° Rubber-bonded metal feet for lowvibration operation
- [°] Easy transport due to integrated crane eyes
- [°] Easy maintenance and accessibility due to optimised positioning of components

EXPLODED VIEW

"How can the heating and cooling supply be more green? ENGIE Refrigeration provides the answer.

- Our therm**eco**₂ high-temperature heat pump is a key heating and cooling technology.
- It develops its full potential whenever there is a simultaneous strong demand for heating and cooling. This is where it shines with an outstanding performance and maximum efficiency. That is how we assist you reliably on your path to climate neutrality!"

Jochen Hornung

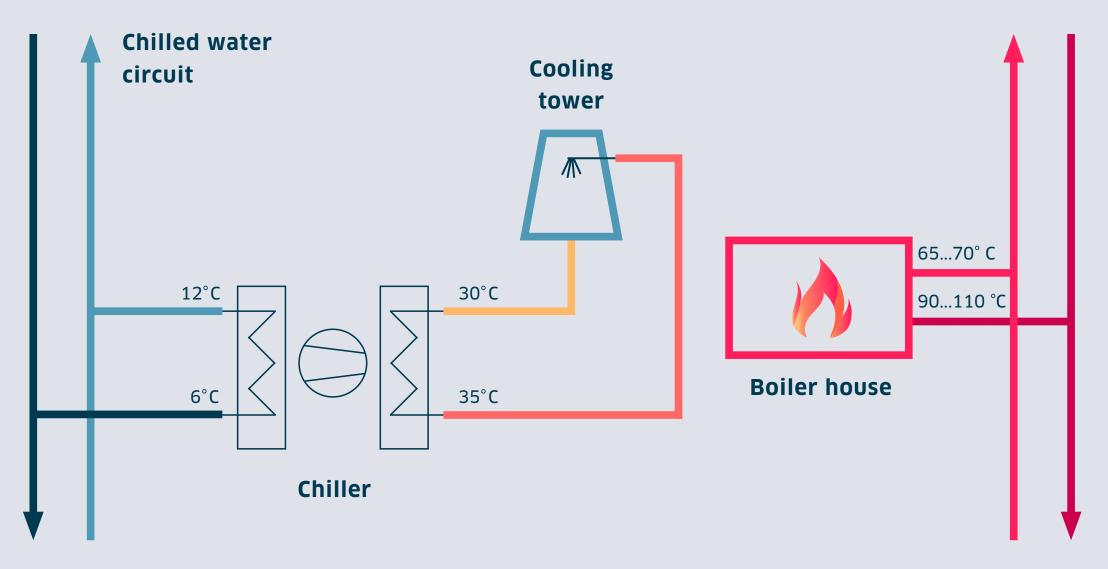
CEO of ENGIE Refrigeration

UNUSED **Potential?** Not With thermeco₂!

Our high-temperature heat pumps make it possible to generate warm water and chilled water with just one machine.

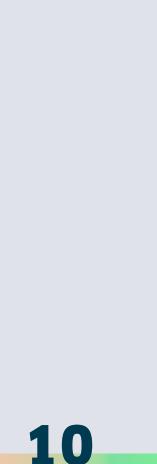
How you benefit: You save money on investment and operation while saving the environment. That is how you can utilise the full potential!

SIMULTANEOUS HEATING AND COOLING



DOES THIS SEEM FAMILIAR?

Standard heating and cooling application involving two systems?

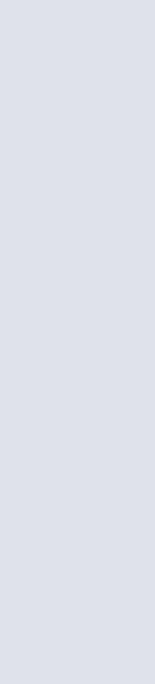

In Germany, this is the typical starting point: so far, you have used the two standard applications for heating and cooling in two systems. Warm water is generated in the boiler house, refrigeration is performed by conventional chillers, and the exhaust heat from the refrigeration is released into the environment by a re-cooling system such as a cooling tower.

The results: high costs for gas, electricity and water treatment.

Standard heating and cooling application involving two systems

YOUR FUTURE:

Heating and cooling supply with thermeco₂


Now all you need is our therm**eco**₂ hightemperature heat pump to handle the functions of heating and cooling in a single machine and utilise them simultaneously.

therm**eco₂** is ideal for challenging temperature ranges. The standard temperature range reaches from +90 °C hot water to -5 °C refrigeration.

Heating and cooling supply with thermeco₂

SIMULTANEOUS HEATING AND COOLING

ALL SIGNS POINT TO THE **FUTURE**!

Without statutory limitations

Sustainability is a significant competitive advantage

N N N r

No waste and recycling requirements

National and European funding available

Independence from gas and the cost pressure of fossil fuels

Tax-free, therefore selffinancing The thermeco₂ prepares your supply and thus your business for a green future. And you gain full planning and investment security.

Security for the future and a secure long-term heating supply

No availability restrictions

SUPPLY Security

GWP = 1

AL.

 \bigcirc

No destruction of the ozone layer, no greenhouse effect (ODP = 0, GWP = 1)

INDUSTRIAL DESIGN

Highly efficient even in extreme conditions

SAFETY GROUP A1

Low safety requirements

WITH PLANNING AND INVESTMENT SECURITY

thermeco₂

No legal restrictions, no taxes, no waste and recycling requirements and no availability restrictions

Ready for tomorrow? Certainly, with thermeco2!

ROI

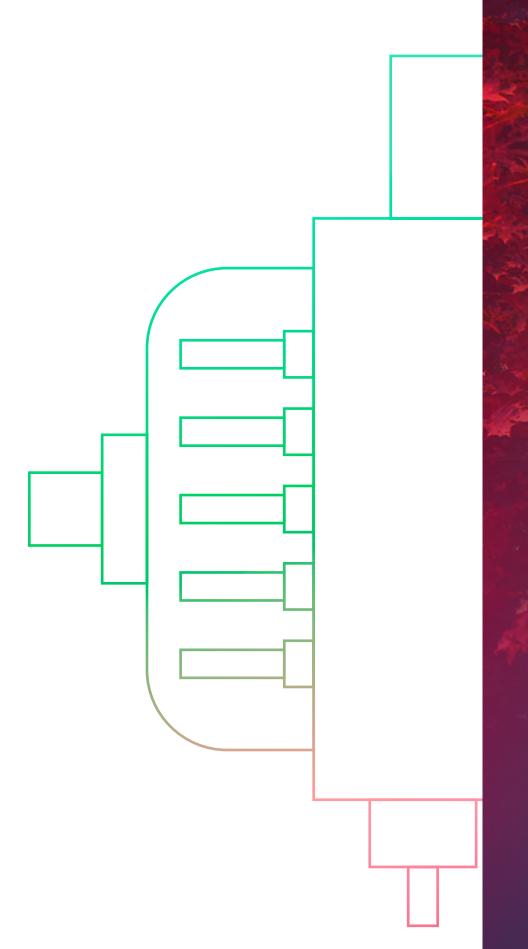
Very fast amortisation, eligible for subsidies in various categories


SERVICE-FRIENDLY

No certification of expertise and no certification duties in line with German regulations on chemicals and climate protection

KEY TECHNOLOGY

High-tech machine with interfaces for all common BCS systems, combined with a versatile control concept


> PRODUCT ADVANTAGES

NATURAL²: CO₂ as a refrigerant

Our thermeco₂ only uses the natural refrigerant CO₂. That's good for the climate. And we can explain why!

CO2 AS A REFRIGERANT

NATURAL²: CO₂ as a refrigerant

WHY IS CO₂ A GOOD **REFRIGERANT?**

The refrigerant market is currently undergoing a transformation. Environmentally harmful HFC refrigerants are increasingly being replaced with HFO refrigerants and natural refrigerants. The F-gas Regulation has further strengthened the long-term trend towards natural refrigerants.

And CO₂, technical name R-744, is such a refrigerant. It is both eco-friendly and user-friendly. CO₂ can be used safely as a refrigerant, and it is also cheap and easy to obtain. For this reason it is classed as sustainable.

In addition, CO₂ as a refrigerant has a GWP value of 1 and an ODP value of 0, so it has no harmful effects on the Earth's atmosphere.

- Very good availability
- Climate neutral and environmentally friendly
- No additional contribution to the greenhouse effect (GWP = 1)
- No contribution to the destruction of the ozone layer (ODP = 0)
- Non-toxic, non-flammable, thermally stable, suitable for materials
- Safety group A1
- Low running costs when compared to other natural refrigerants

WHAT ARE THE BENEFITS OF **USING CO2 AS A REFRIGERANT?**

• Future-proof: a natural substance, so no usage prohibitions or restrictions are to be expected

CO2 AS A REFRIGERANT

NATURAL²: CO₂ as a refrigerant

WHY IS CO₂ NOT HARMFUL AS **A REFRIGERANT EVEN THOUGH IT IS A PROBLEM AS EXHAUST GAS FROM COMBUSTION ENGINES?**

CO₂ refrigerant operates in a cycle process and is not released or emitted as it would be during a combustion process. It can only escape in the form of a leak. Leaks of a refrigerant with a GWP value of 1 are non-critical.

No environmentally harmful to the overall CO₂ balance. All the carbon dioxide involved existed beforehand, so no newly generated CO₂ is released.

CO₂ refrigerant is a by-product generated by plants operated by the chemical industry.

WHAT ARE THE TECHNICAL **CHALLENGES POSED BY MACHINES THAT USE CO2 AS THEIR REFRIGERANT?**

 High efficiency during supercritical operation in the interior heat exchanger

• For maximum efficiency, the required temperature regime needs to match the way the CO₂ heat pump is operated

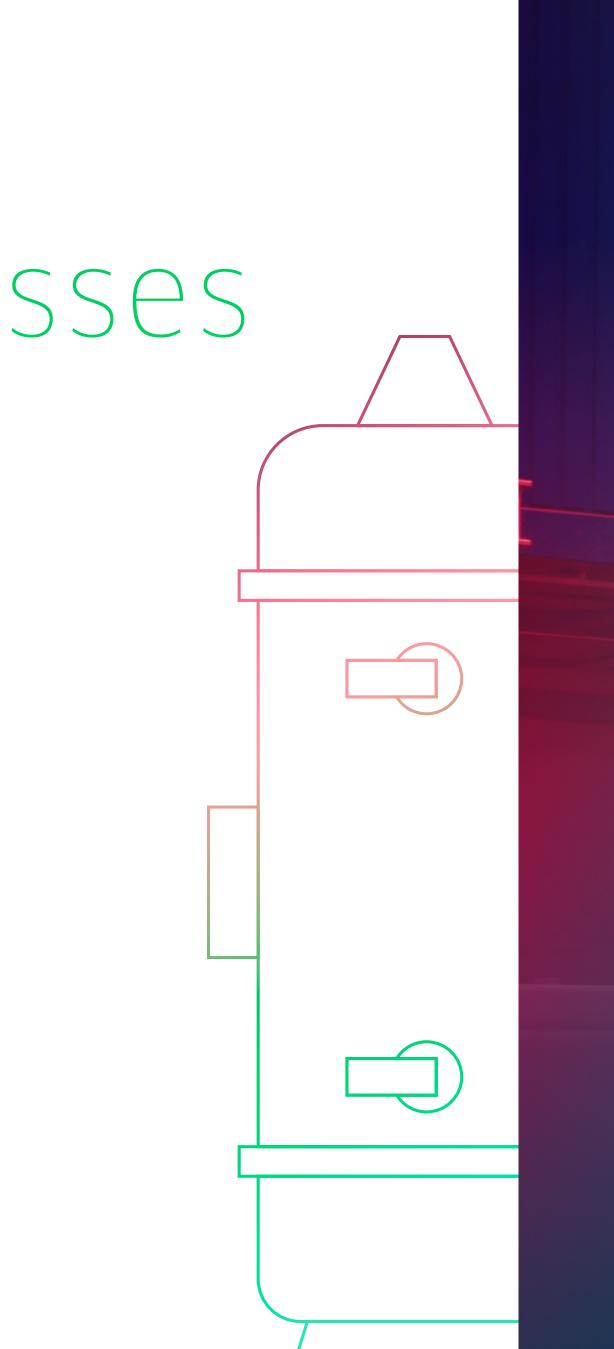
• High pressures require a corresponding design, but can be managed easily in technical terms. In vehicle manufacturing, for example, much higher pressures of up to 2,000 bar are customary for common-rail injection

CO₂ AS A REFRIGERANT

IT'S THE **REFRIGERANT** THAT COUNTS!

There are plenty of refrigerants – and your application determines which of them is the right one for you. But you're always ahead with CO₂ as a refrigerant: it is non-toxic, non-combustible, non-corrosive, antioxidant and eco-friendly.

Compare the values, it's worth it!


R-744 CO ₂	R-290 Propane	R-717 Ammonia	R-32 HFO	R-134A HFC
2	2	2	Z	
RAB		R.S.	R D	R
			0	.0
	CO2	CO2PROPANE>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	CO2PROPANEAMMONIAImage: Second sec	CO2PROPANEAMMONIAHFOこここここここここここここここここここここここここここここここここここ

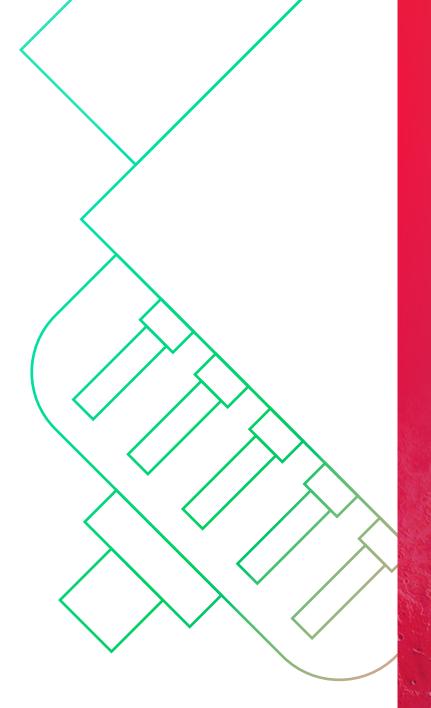
ALWAYS READY: thermeco₂ impresses in numerous applications

This machine really heats things up: Our therm**eco**₂ large high-temperature heat pump provides condenser leaving water temperatures of up to 90° C as standard. This means it can replace conventional boilers in a range of applications.

INDUSTRIES 18

	ROOM HEATING AND CLIMATE CONTROL	WARM WATER PREPARATION	
YOUR APPLICATION	Communal and public buildings, data centres, hotels, shopping malls, furniture stores, office buildings, airports, logistics buildings, hospitals, swimming pools, industrial buildings		
IR TAGES	Monovalent in new builds and during renovation of existing buildings with heating systems with a design temperature of +70 °C (low-temperature heating)	Monovalent for compliance with hygiene requirements for the heating of drinking water as per TrinkwV	
YOUR	 Compliance with legal regulations (EnEV/GEG) Heating and cooling (improved climatic comfort) Listed internally with BAFA		

GREENHOUSES	HEATING NETWORKS	PROCESS HEATING AND COOLING
Commercial greenhouses, horticulture industry	Heating networks, districts, housing estates	Food industry, chemicals and pharmaceuticals industry, manufacturing industry, hospitals, data centres
 Ideal temperature range for use of different heating systems with especially large spreads between supply and return temperatures Sustainability and long- term heating supply thanks to independence from gas / fossil fuels Carbon-neutral food farming Energy costs predictable over the long term 	 As a base load in the energy mix with other heat generators (CHP, biomass, solar thermal energy collectors) Monovalent over the long term in the context of lowering network temperatures (low-ex networks) 	 Monovalent simultaneous heating and cooling Lower investment costs Major CO₂ savings through emission-free heating and cooling supply Contribution towards climate protection goals with natural refrigerant CO₂


INDUSTRIES 19

IN GLOBAL DEMAND – **Performing Vorldvide!**

We are assisting customers on their path to climate neutrality with our eco-friendly high-temperature heat pump – in Germany, in Europe, and around the world.

More than 90 machines are currently in operation worldwide, and all of them are providing greater energy efficiency and sustainability.

Would you like to discuss a specific project? Contact us directly!

REFERENCES AROUND THE WORLD

3 BEST PRACTICE CASES presented here for you:

Five therm**eco**² with a total heating capacity of five megawatts are contributing to the zero-carbon strategy at greenhouses owned by the Osatina Group.

Two therm**eco₂** high-temperature heat pumps ensure smooth-running processes at ALBA Recycling GmbH. In the "ReUseEnergy" model project for the EU, thermeco₂ impresses as part of an innovative solution for waste heat utilisation.

REFERENCES 21 AROUND THE WORLD

EVERYONE LIKES TO SAVE. And thermeco₂ reduces CO₂ while saving you money!

Gas cost savings [€] per year (operating costs) at 20 ct/kWhel, 8 ct/kWh industrial gas price, 5,000 operating hours

4,210 KW

Rated heating capacity of 5 HHR1000-IHE units (14/8°C, 30/90°C)

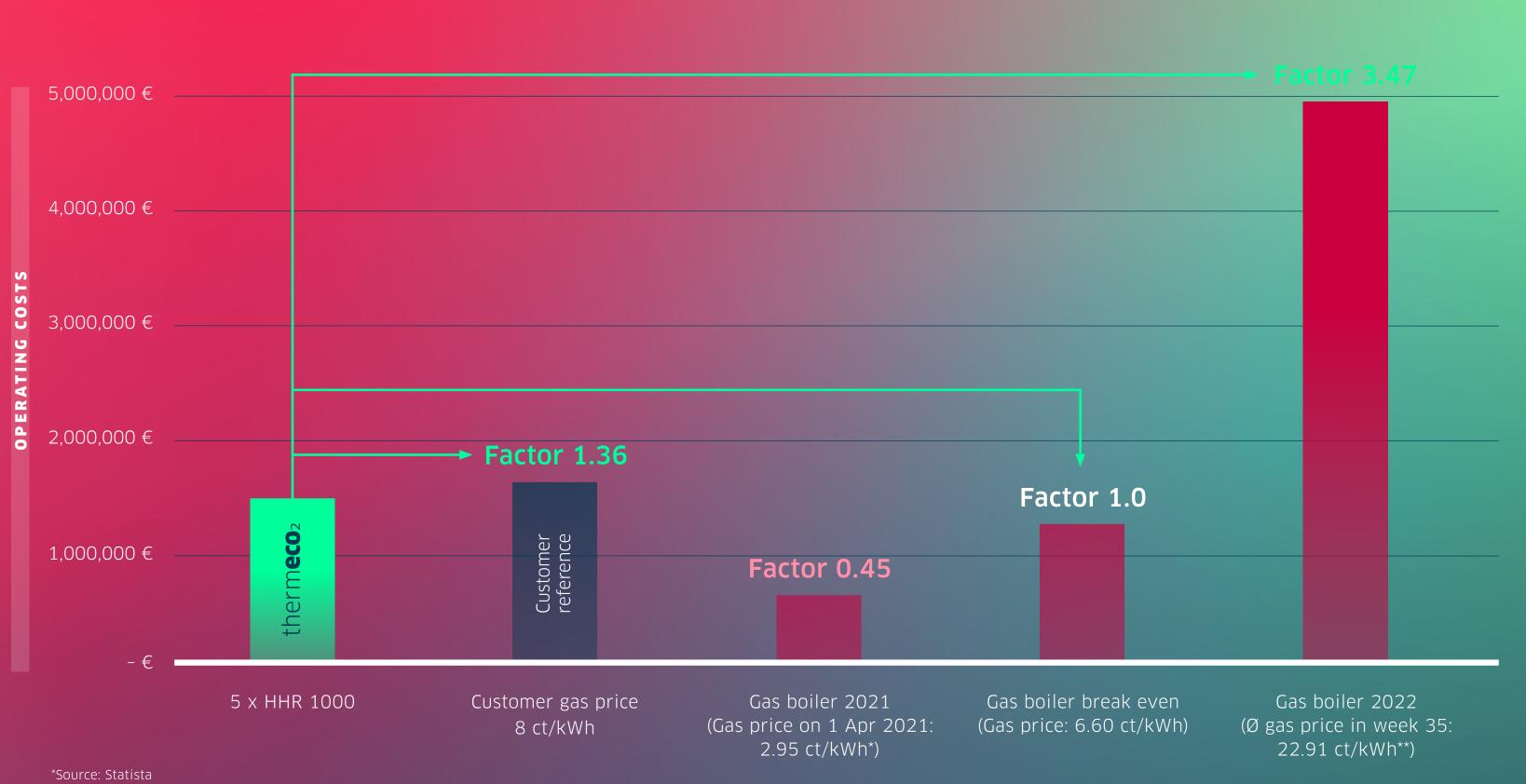
These facts will win you over:

Five therm**eco**² high-temperature heat pumps are helping one of our customers, the Osatina Group, one of the leading food producers in Croatia, to reduce their costs and carbon emissions. And it's a considerable reduction!

-402.050€

- 4.852 t

CO₂ reductions per year (5,000 operating hours) with an emission factor of 0.05 kg CO₂/kWhel (on-site solar power), emission factor of 0.247 kg CO₂/kWhgas


~1,706 cars

CO₂ reductions correspond to the carbon emissions of petrol cars for a fuel consumption of 6 l/100 km and a mileage of 20,000 km per year

EFFICIENCY 22 VALUES

WE LET THE FACTS SPEAK!

**Source: Spot EGSI THE

Energy prices are reaching unexpected levels - and there is no end in sight. Now more than ever, it's worth taking a closer look.

We compared the costs of our therm**eco**₂ reference customer with an annual heating energy demand of around 21 GWh to the costs of a conventional gas boiler.

And it's clear to see: The results are impressive!

GAS BOILER 23 VS. HEAT PUMP

READY FOR THE **HEATING** OF THE **FUTURE**?

ENGIE Refrigeration ensures the right temperature for every process. Around the world, our heat pumps and chillers stand for maximum technical expertise, economy, efficiency and sustainability. Our aim: to provide our customers with the best solutions for their path towards climate neutrality. To achieve this, we rely on individual consultation, customised concepts and comprehensive services. As a member of the worldwide ENGIE Group, we have a global network of specialists at our disposal and can realise our refrigeration and heating solutions for you, both at home and abroad. The experts at ENGIE Refrigeration are here for you:

National/International Service

National/International Sales

With eleven branch offices and around 130 service employees, we are always nearby and available around the clock, anywhere in Germany:

ENGIE Refrigeration GmbH | Josephine-Hirner-Straße 1 & 3, D-88131 Lindau am Bodensee | T + 49 8382 706-1 | F + 49 8382 706-410

We are happy to **ADVISE YOU**.

